Rapid and effective correction of RF inhomogeneity for high field magnetic resonance imaging.
نویسندگان
چکیده
The well-known variability in the distribution of high frequency electromagnetic fields in the human body causes problems in the analysis of structural information in high field magnetic resonance images. We describe a method of compensating for the purely intensity-based effects. In our simple and rapid correction algorithm, we first use statistical means to determine the background image noise level and the edges of the image features. We next populate all "noise" pixels with the mean signal intensity of the image features. These data are then smoothed by convolution with a gaussian filter using Fourier methods. Finally, the original data that are above the noise level are normalized to the smoothed images, thereby eliminating the lowest spatial frequencies in the final, corrected data. Processing of a 124 slice, 256 x 256 volume dataset requires under 70 sec on a laptop personal computer. Overall, the method is less prone to artifacts from edges or from sensitivity to absolute head position than are other correction techniques. Following intensity correction, the images demonstrated obvious qualitative improvement and, when subjected to automated segmentation tools, the accuracy of segmentation improved, in one example, from 35.3% to 84.7% correct, as compared to a manually-constructed gold standard.
منابع مشابه
Quantitative T(1)(ρ) imaging using phase cycling for B0 and B1 field inhomogeneity compensation.
T(1)(ρ) imaging is useful in a number of clinical applications. T(1)(ρ) preparation methods, however, are sensitive to non-uniformities of the B0 magnetic field and the B1 RF field. These common system imperfections can result in image artifacts and quantification errors in T(1)(ρ) imaging. We report on a phase-cycling method which can eliminate B1 RF inhomogeneity effects in T(1)(ρ) imaging. T...
متن کاملFIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) by
FIELD INHOMOGENEITY COMPENSATION IN HIGH FIELD MAGNETIC RESONANCE IMAGING (MRI) Zhenghui Zhang, PhD University of Pittsburgh, 2006 This thesis concentrates on the reduction of field (both main field B0 and RF field B1) inhomogeneity in MRI, especially at high B0 field. B0 and B1 field inhomogeneity are major hindrances in high B0 field MRI applications. B1 inhomogeneity will lead to spatially v...
متن کاملStatic Coil Design Considerations for the Magnetic Resonance Imaging
One of the main challenges in developing magnetic resonance imaging (MRI) systems is to create a static coil that needs to generate magnetic field density along with the characteristics of optimal homogeneity and magnitude size. To do this, two N42 Block PMs are used and the iron core is designed and optimized in accordance with the dimensions of PM pieces using ANSYS Maxwell software. Then, al...
متن کاملInherent insensitivity to RF inhomogeneity in FLASH imaging.
Radiofrequency (RF) field inhomogeneity is an unavoidable problem in MRI, and it becomes severe at high magnetic fields due to the dependence of B1 on the sample. It leads to nonuniformities in image intensity and contrast, causing difficulties in quantitative interpretation and image segmentation. In this work, it is observed that with the fast low-angle shot (FLASH) sequence, which is often u...
متن کاملB ‐ mapping and B inhomogeneity correction at high field THÈSE NO 6582 ( 2015 ) ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE
Magnetic resonance imaging is a modern imaging technique that allows anatomical images used in many medical diagnosis to be acquired in a completely non-invasive way. MR images acquired at the highest strength of the main magnetic field B0 are of interest since they highly benefit from the increased signal to noise ratio which is proportional to B0. At ultra high field strengths (B0 ≥ 7 Tesla) ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Human brain mapping
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2000